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Abstract1

The loop structure of cortico-striatal anatomy in principle enables both descending (cortico-striatal) and2

ascending (striato-cortical) influences, but the factors that regulate the flow of information in these loops3

are not known. We report that low- and high-gamma oscillations (∼50Hz and ∼80Hz respectively) in the4

local field potential of freely moving rats are highly synchronous between the infralimbic region of the5

medial prefrontal cortex (mPFC) and the ventral striatum (vStr). Strikingly, high-gamma oscillations in6

mPFC preceded those in vStr, whereas low-gamma oscillations in mPFC lagged those in vStr, with short7

(∼1ms) time lags. These systematic deviations from zero-phase synchrony were consistent across measures8

based on amplitude cross-correlation and phase slopes, and were robustly maintained between behavioral9

states and different individual subjects. Furthermore, low- and high-gamma oscillations were associated with10

distinct ensemble spiking patterns in vStr, even when controlling for overt behavioral differences and slow11

changes in neural activity. These results imply that neural activity in vStr and mPFC is tightly coupled at the12

gamma timescale, and raise the intriguing possibility that frequency-specific deviations from this coupling13

may signal transient leader-follower switches.14
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Introduction15

The parallel loops that recurrently interconnect the cortex, basal ganglia, and thalamus are a major struc-16

tural feature of the mammalian nervous system, generally thought to be broadly involved in the selection,17

initiation, and refinement of actions across domains from motor to cognitive (Alexander and Crutcher, 1990;18

Pennartz et al., 2009; Humphries and Prescott, 2010). In each loop, the signal flows from cortex to stria-19

tumm, through other basal ganglia nuclei, and out through the thalamus back to cortex. However, within20

these loops there are back-projections, and particularly in the limbic loop that includes prefrontal cortex21

and the ventral striatum, nodes receive input from other brain areas such as the hippocampus and amygdala22

(Haber et al., 2000; Voorn et al., 2004). The question thus arises how the flow of information is controlled in23

this architecture: for instance, are the nodes that form a loop always coupled, or can one transiently become24

a “leader” while others follow?25

One approach for addressing this issue is though examination of oscillations in local field potentials (LFPs),26

which are thought to reflect temporal organization in meso-scale neural activity arising primarily from27

summed synaptic currents (Mitzdorf, 1985; Nunez and Srinivasan, 2006; Buzsáki et al., 2012). Influen-28

tial proposals such as “communication through coherence” and its relatives (“CTC”; Singer 1999; Fries29

2005) suggest that effective connectivity between networks and brain structures can be modulated at fine30

timescales by the degree of coherence (synchrony) between oscillations in participating regions. This notion31

has found substantial modeling and experimental support in a variety of neural systems and rhythms (Akam32

and Kullmann 2014; Bosman et al. 2012; Lisman and Jensen 2013; although is not free of pitfalls, see e.g.33

Buzsáki and Schomburg 2015), raising the possibility that neural synchrony reflected in LFP oscillations34

may also contribute to regulating the flow of information in cortico-striatal loops.35

Even in the absence of postulating a mechanistic role for LFP oscillations in such routing or gain control,36

such oscillations can serve as markers that provide information about the spatial and temporal organization37

of neural activity within and across brain regions (Friston et al., 2014). In the corticostriatal network specif-38
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ically, LFP activity is known to change with learning (Howe et al., 2011; Koralek et al., 2013; Thorn and39

Graybiel, 2014) and different behavioral states (Berke, 2009; Gruber et al., 2009; Leventhal et al., 2012), and40

serves as a biomarker of behavioral and neurological disorders in humans (Boraud et al., 2002; Hammond41

et al., 2007) and animal models (Courtemanche et al., 2003; Cruz et al., 2011; Lemaire et al., 2012; Dejean42

et al., 2012). Importantly, a number of studies have shown that spike timing is systematically related to43

these oscillations (Berke et al., 2004; Sharott et al., 2009; Howe et al., 2011) demonstrating that although the44

sources of the LFP oscillations in the basal ganglia may not yet be completely clear, they contain information45

about local spiking activity.46

Here we focus on gamma oscillations, which are prominent in prefrontal cortex, ventral striatum, and other47

nodes of the limbic system (van der Meer et al., 2010; Dejean et al., 2011; Stujenske et al., 2014; Donnelly48

et al., 2014) and therefore provide a potential access point for determining how the temporal dynamics49

of neural activity across this network are organized. Classically, gamma oscillations are thought of as a50

relatively local phenomenon, generated by the interplay of fast excitatory-inhibitory feedback loops (Bartos51

et al., 2007; Buzsáki and Wang, 2012; Womelsdorf et al., 2014). However, observations and computational52

models of long-range gamma synchrony in the face of significant conduction delays (Traub et al., 1996;53

Gollo et al., 2014) have shown that even distant regions can exhibit coordinated activity in this frequency54

range, potentially playing a role in binding, gain control or routing, and plasticity (Fries et al., 2007; Uhlhaas55

et al., 2009; Bastos et al., 2015).56

Specifically, by recording simultaneously in mPFC and vStr, we show that gamma oscillations in these57

regions are strongly synchronized. Strikingly, amplitude and phase lags between the two sites were very close58

to zero, as in the classic long-range zero phase lag results (Traub et al., 1996; Buzsáki and Schomburg, 2015),59

but also suggestive of volume conduction from a common source. However, closer examination revealed that60

low- and high-gamma frequencies, previously shown to have different relationships to behavior, learning and61

spiking activity (van der Meer and Redish, 2009b) were in fact associated with systematic deviations from62

zero phase lag, in opposite directions. Furthermore, these oscillations were associated with distinct neural63
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ensembles, as shown with a multivariate classifier.64

Materials and Methods65

Subjects and overall timeline. This study consists of two experiments, performed on different sets of sub-66

jects. Experiment 1 centers on the relationship between mPFC and vStr gamma oscillations in the local field67

potential (LFP), performed on a new (previously unpublished) data set described in detail here. Experiment68

2 relates vStr gamma oscillations to ensemble spiking patterns. Because this latter experiment uses a pre-69

viously described dataset (van der Meer and Redish, 2009a,b) the experimental procedures are not repeated70

here; only analysis sections “Gamma event detection” and “Ensemble classification” apply to these data.71

Subjects for the mPFC-vStr LFP study (Experiment 1) were four male Long-Evans rats (Harlan, Missis-72

sauga), 4-5 months old at the start of training and food-restricted to no less than 85% of their maximum73

pre-training weight. All animals were housed on a 12 hr:12 hr light/dark cycle, with experiments performed74

during the light phase.75

Rats were first familiarized with the experimental environment by daily handling in the experimental room76

and free exploration of the experimental apparatus for 5 days. Next, rats were trained to shuttle back and77

forth along a linear track, described below, until a criterion of 100 trials in a 40-minute session was reached78

(this took 6 ± 2 days, mean ± SD). Rats were given two days of full rest with ad-libitum food before79

surgery. After surgery rats were allowed to recover for at least 5 days (mean: 8 ± 2 days), before any further80

training. Before neural recording commenced, rats were retrained for 7 ± 3 days until they again reached81

the performance criterion of 100 trials per 40 minutes.82

All procedures were pre-approved by the Animal Care Committee of the University of Waterloo (AUPP83
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11-06) and in accordance with Canadian Council for Animal Care (CCAC) guidelines.84

Behavioral task. The apparatus for Experiment 1 was a 184-cm long elevated linear track (Figure 1A, one85

run is defined as a trial). Rats could nosepoke into photobeam-equipped receptacles for food reward (two86

TestDiet 5TUL 45 mg pellets at each end). Reward delivery was triggered following a 700 ms nosepoke into87

the reward receptacle, with a further 800 ms or more required for pellets released from the pellet dispensers88

(Coulbourn) to reach the rat. The basic linear track configuration was a “no-choice” task (Figure 1A, left)89

in contrast with the “one-choice” version of the task (Figure 1A, right; see caption for details) which was90

started once rats completed 7 recording days on the “no-choice” task. Track configurations (direction of the91

45-degree ends, and location of the Y-piece) were pseudorandomized across days. The analyses and results92

reported collapse across the two task versions, since no differences were apparent at the neurophysiological93

level.94

[Figure 1 about here.]95

Electrode arrays and surgery. Rats were chronically implanted with a total of twelve independently mov-96

able electrodes (stereotrodes or tetrodes): four in the ventral striatum (AP +1.3-1.7mm and ML +1.6-2.4mm97

relative to bregma), two in the medial prefrontal cortex (AP +3mm and ML +0.6mm), two in the amygdala98

(AP -2.2mm and ML +5.3mm), four in the ventral hippocampus (AP -4.9mm and ML +5mm; all targets on99

the right hemisphere). Because ventral hippocampal and amygdala electrodes did not reliably reach their100

intended targets, only recording data from vStr and mPFC were analyzed here.101

Surgical procedures were as described previously (Malhotra et al., 2015). Briefly, rats were deeply anes-102

thetized, initiated by pentobarbital injection (50mg/kg i.p.) and maintained by isoflurane inhalation (0.5-2%103

in 0.7-1 l/min oxygen). Following administration of an analgesic (Anafen, 10 mg/kg s.c.) and antibiotic104

(Duplo-cillin, i.m.) the scalp was shaved and disinfected before exposing the skull surface, into which jew-105

elers’ screws were inserted and craniotomies were drilled. Dura was removed before the electrode bundle106
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was lowered to the cortical surface. The implant was secured to the skull with dental acrylic (Jet Acrylic,107

Lang Dental Co. and Metabond, Parkell) and a ground connection made to a skull screw on the contralat-108

eral parietal bone. Following surgery, rats were given at least 5 days to recover before behavioral training109

recommenced.110

Neural data acquisition. Tetrodes and stereotrodes made from 17µm platinum-iridium, teflon-coated wire111

(California Fine Wire) were plated with platinum black solution to 200-400kΩ impedance (measured at112

1kHz, BAK-1 impedance tester, BAK Electronics), assembled into independently movable bundles as de-113

scribed previously (Malhotra et al., 2015), and soldered to a Neuralynx EIB-36-16TT interface board. LFPs114

were acquired at 2kHz using a Neuralynx preamplifier (HS-36) and data acquisition system (Digital Lynx115

SX). Importantly, a panel ground reference was used for all recordings to avoid contamination from a com-116

mon neural reference.117

Recording of synthetic test signals. To test if filtering at the data acquisition and processing stages, and/or118

differences in electrode impedance could account for the observed results, we recorded synthetic signals119

from a signal generator (Minirator MR2, NTi). Using a Buzsaki32L probe (NeuroNexus B-stock) consisting120

of four 8-site shanks with 32 total recording sites (of which 24 were functional), we first determined the121

impedance of each recording site (NanoZ, Multi Channel Systems; measured at 1kHz and 100Hz). Next, we122

recorded 40, 63, 80 and 100Hz signals of 100 µV each in amplitude by placing the probe in a 0.9% saline123

solution connected to the signal generator; thus, all sites are presented with an identical test signal. We then124

analyzed the phase lag between signals recorded from each pair or recording sites as a function of frequency125

and impedance to determine (1) if any systematic deviations from the theoretical zero phase lag resulted, and126

(2) compare these deviations to those observed in the neural data.127

Experimental control. A custom-written MATLAB script accessed video tracking data and photobeam sta-128

tus through the NetCom interface and software (Neuralynx), such that rewards could be delivered according129

to the task design.130
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Histology. After data collection was complete, 10µA current was passed through the electrodes for 10s131

each. One rat did not undergo this gliosis procedure because of premature detachment of the electrode array.132

Three days following gliosis, rats were anesthetized with isoflurane, asphyxiated and perfused intracardially133

with 10% formalin. Brains were extracted and stored in formalin with 30% sucrose before being cut in134

50µm sections using a freezing microtome. Sections were mounted on gelatin-coated slides, stained with135

metachromatic thionin and coverslipped for localization of recording locations. Only data from electrodes136

with confirmed recording locations in vStr and the infralimbic area of the mPFC were analyzed (Figure 2).137

Analysis overview. All analyses were performed using MATLAB R2014a, and can be reproduced using code138

on our public GitHub repository (https://github.com/mvdm/papers/Catanese_vanderMeer2016/).139

Original data files, metadata, and codebase tutorials will be provided on request.140

For Experiment 1 (Figures 3-6), local field potentials (LFPs) were recorded from vStr and the infralimbic141

region of the mPFC. Two sessions per rat were analyzed. For each rat, we selected the session from the no-142

choice task and the one-choice task with the highest number of trials (except for Rat 3, for which 2 sessions143

from the no-choice task were selected because no data were available from the one-choice task). The results144

obtained in the two task conditions were similar, therefore analyses collapsed across tasks (no-choice and145

choice) and across reversals in the choice version of the task.146

For Experiment 2 (Figures 8-9), LFPs and spike waveforms were recorded from the vStr only, as described147

in van der Meer and Redish (2009b). All recording sessions with at least 25 simultaneously recorded neurons148

were included, for a total of 64 sessions from 4 animals.149

Data pre-processing (both experiments). Because neural signals for Experiment 1 were recorded against150

ground (rather than a skull screw or intracranial reference), removal of mechanical artifacts in the data was151

required. All intervals exceeding a threshold (+/- 750µV), plus 100ms either side, were detected as an artifact152

and eliminated from analysis.153
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Next, to detect and eliminate contamination from muscle activity, such as occurs during chewing, LFPs154

were band-pass filtered between 125-250Hz (this EMG frequency band was determined by visual inspection155

of spectrograms). Intervals with an amplitude envelope greater than one standard deviation (Experiment156

1) or 1.5 standard deviations (Experiment 2) from the mean, plus 100ms on either side, were considered157

chewing events and eliminated from further analysis. (Different thresholds were used because in Experiment158

1, data were recorded against ground, whereas those in Experiment 2 were recorded against a reference159

electrode located in the overlying corpus callosum.) Note also that data analyzed during task performance,160

when chewing was most likely to occur (reward epoch; Figure 1a), were restricted to a window of 0 to 1.5s161

following the nosepoke, before contact with reward pellets is made.162

Finally, we found that gamma events could sometimes be partially overlapping with spindle oscillations or K-163

complex like waveforms, associated with transient 25-30Hz power. To avoid potential gamma contamination164

by these events, LFPs were band-pass filtered between 25 and 30Hz to detect and remove these events;165

intervals with a power greater than one standard deviation from the mean, plus 100ms either side, were166

considered as “K-like” event and removed from analysis.167

Analysis epoch definition (Experiment 1). Analyses were performed on the full task session, on off-task168

rest, or on specific task epochs (“Run” and “Reward”), as indicated in the main text. For Run, session data169

was restricted to on-task times when animals moved at a speed of ∼10 cm/s or more. For Reward, data was170

restricted to the pre-reward nosepoke period (0 to 1.5s relative to nosepoke initiation; food pellets do not171

reach the animal until after 1.5s). “Rest” refers to data acquired while animals rested in their home cage172

following task completion.173

Spectral Analysis (Experiment 1). We first characterized the overall spectral properties of vStr and mPFC174

LFPs over a broad frequency spectrum for the entire recording session, as well as for specific epochs (“Rest”,175

“Run”, “Reward”). Power spectral densities (PSDs) were computed with the MATLAB pwelch() function176

and normalized by 1/f2; coherence was computed with mscohere(), both using a 1-second Hanning177
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window with 50% overlap.178

Gamma event detection (both experiments). Next, we focused on gamma-band oscillations by detecting179

transient events during which the gamma-band envelope exceeded a significance threshold (Figure 1B). This180

detection was performed on the vStr LFPs because the amplitude of gamma events systematically exceeded181

that of synchronous events recorded in mPFC (Figure 2B and 3). For this purpose, LFPs were first filtered182

in the low-gamma (45-65Hz) or high-gamma band (70-90Hz) using a 5th order Chebyshev filter (passband183

ripple, 0.5 dB) and the MATLAB filtfilt() function. Instantaneous signal amplitude was obtained by184

taking the modulus of the Hilbert-transformed signal (MATLAB abs(hilbert())). Gamma events were185

detected when this amplitude envelope exceeded the 95th percentile of the amplitude distribution (across the186

entire session), and contained at least three oscillation cycles of at least 50µV in amplitude. Events separated187

by 50ms or less were merged (if both were of the same gamma type) or excluded (if different gamma type).188

All gamma-specific analyses were applied to 400ms windows centered on these events.189

Amplitude cross-correlations (Experiment 1). To determine the temporal relationship between vStr and190

mPFC LFPs, we first employed an event-based version of the cross-correlation analysis in Adhikari et al.191

(2010). We obtained gamma-band envelopes for both LFPs as described above, and for each gamma event192

separately, found the peak of the cross-correlation (from -50 to +50ms, MATLAB xcov() function) com-193

puted on the rank-transformed envelopes. We then tested if the distribution of peak locations was sig-194

nificantly shifted from zero, for the set of low- and high-gamma events separately (one-sample Wilcoxon195

ranksum test) and if the distribution of cross-correlation peaks was different between low- and high-gamma196

events (two-sample Wilcoxon ranksum test). To ensure that cross-correlations were computed on gamma197

events that were present in both mPFC and vStr, the peak cross-correlation for each event was required to198

pass a permutation test in which the phases of the Fourier transform were randomly reassigned. Only events199

in which the peak cross-correlation was in the top 5% relative to 1000 such permutations were used in the200

cross-correlation analysis.201
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Phase slopes and phase-slope index (PSI, Experiment 1). Next, we computed the phase-slope index202

(PSI, Nolte et al. 2008) using the FieldTrip toolbox (Oostenveld et al., 2011), a measure that quantifies the203

dependence of phase lag on frequency (Figure 5a). To this end, we first computed the phase lag (angle of204

the coherency) between vStr and mPFC LFPs across the frequency spectrum (from 40 to 120 Hz, in steps205

of 1Hz) using a multitaper method (FieldTrip ft freqanalysis(), mtmfft method with tapsmofrq206

set to 4). These parameters were chosen because they performed best in recovering ground truth time lags207

in simulated data; changing the level of frequency smoothing (tapsmofrq = 8, or to a single Hanning208

window) resulted in minor numerical differences, but did not change the pattern of results. After verifying209

that these phase cross-spectra contained linear regions (phase slopes; example phase spectra are shown in210

Figure 5b and 6a) we computed the phase-slope index using the FieldTrip ft connectivity() function211

with bandwidth 4.212

To infer the time lag (or lead) between vStr and mPFC from observed phase slopes, we used the following213

equation:214

ta−b = [
φa−b(f + df)− φa−b(f)

df
]/360◦ (1)

where ta−b is the time lag (or lead) in seconds between signals a and b, to be inferred from the phase215

differences φa−b (in degrees) observed at frequencies f and f + df . For instance, given a phase difference216

φa−b = 45◦ between signals a and b at f = 25Hz, and φa−b = 36◦ at f = 20Hz, ta−b = [(45− 36)/(25−217

20)]/360 = 5ms (Figure 5a). As df → 0, the fraction shown in square brackets above corresponds to the218

derivative φ′a−b(f), i.e. the phase slope. Positive time lags indicate that a leads b.219

Ensemble classification (Experiment 2). For the results in Figure 9, we analyzed data from a previously220

published dataset (van der Meer and Redish, 2009a,b) in which electrodes were located in the vStr only in221

order to maximize the number of simultaneously recorded units. Experimental procedures for these data were222
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similar to those described for Experiment 1, except that the task used was a modified T-maze instead of a223

linear track (van der Meer and Redish, 2009a). Gamma events were detected with the same parameters as for224

Experiment 1, described above, with the exception that no absolute amplitude threshold was used (because225

LFPs in this data were recorded relative to an intracranial reference, signal amplitudes were generally lower226

and this threshold was unnecessary). To minimize the impact of overt behavioral differences, only gamma227

events that occurred off-task (on a terracotta pedestal filled with towels) or at a single reward site on the task228

(“Feeder 2”, van der Meer and Redish 2009a) were included.229

To probe the relationship between gamma events and spiking activity, we first converted spike rasters ob-230

tained from simultaneously recorded vStr neurons into vectors of spike counts (one N x 1 vector for each231

gamma event, where N is the number of neurons in the data set), normalized to firing rates. Using 10-fold232

cross-validation, we trained a linear discriminant classifier (MATLAB classify() function) to classify233

these spike count vectors as low-gamma or high-gamma (Figure 8). In increments of 5 cells, we sampled234

randomly from the total number of neurons in the recorded ensemble (1000 samples per ensemble size) and235

obtained the classification performance of the best performing ensemble. Thus, classification performance of236

ensemble size 1 indicates the performance of the single best neuron; classification performance at ensemble237

size 6 indicates the performance of whichever subset of 6 neurons performed best, and so on.238

Because different sessions had different numbers of detected low- and high-gamma events, we subsampled239

from the frequency band with the largest number of events, ensuring that chance performance was at 50%240

for each session. As a control, we performed the same analysis on a set of spike count vectors with the spike241

data shifted up to 5s relative to the LFP. The exact time shift was determined on an event-by-event basis by242

finding the time with the lowest broadband gamma power (40-100 Hz) within 5s either way from each actual243

event.244

We tested a number of different classifiers in addition to the linear discriminant, and found that Naive Bayes,245

k-nearest-neighbor (with k = 9; other values of k were worse) and a support vector machine (MATLAB246
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svmclassify()) all returned relatively similar performance. Thus, we report only the linear discriminant247

results here.248

[Figure 2 about here.]249

Results250

Experiment 1251

We recorded local field potentials (LFPs) simultaneously from the infralimbic region of the medial prefrontal252

cortex (mPFC) and ventral striatum (vStr) from four rats running linear tracks for food reward (Figure 1A).253

Rats ran an average of 124 ± 27 (mean ± S.E.M) trials per 40-minute session. Each task session was254

immediately followed by a rest session consisting of a 40-minute home cage recording. All recordings were255

referenced against recording system ground to avoid spurious correlations due to a common reference signal.256

As reported previously, vStr and mPFC both exhibited LFP oscillations in the gamma band, with distinct os-257

cillations in the low-gamma (45-65Hz) and high-gamma (70-90Hz) bands that manifest as transient “events”258

(Figure 1B; van der Meer and Redish 2009b; Berke 2009; Howe et al. 2011; Dejean et al. 2013). These two259

gamma bands appear as elevated regions in the power spectrum densities for both mPFC and vStr regions260

(Figure 3A; mean over task sessions). As in our previous reports investigating the behavioral correlates of261

vStr gamma (Malhotra et al., 2015; van der Meer and Redish, 2009b), the vast majority of low- and high-262

gamma occurred when the animal is stationary, such as occurs at the reward sites on the task, and during263

off-task rest periods. When gamma events occurred, low- and high-gamma oscillations tended to follow264

a characteristic fine-timescale alternating pattern in which low-gamma leads high-gamma (Malhotra et al.,265

2015). Other groups have reported similar properties, as well as further behavioral correlates and dissocia-266
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tions between the two gamma bands (Kalenscher et al., 2010; Howe et al., 2011; Morra et al., 2012; Donnelly267

et al., 2014). Experiment 1 focused on the relationship between gamma oscillations in the vStr and mPFC.268

Gamma oscillations are synchronized in phase and amplitude between ventral striatum and269

medial prefrontal cortex270

Visual inspection of raw LFP traces suggested a clear relationship between gamma oscillations in mPFC and271

vStr: gamma events in both traces tended to co-occur in time (Figure 1B). We quantified this relationship272

first by computing the correlation between the signal power of vStr and mPFC LFPs across frequencies273

(Figure 3B). The elevated correlation in the gamma band – including low and high gamma – indicates that274

power in the gamma band was more strongly correlated between structures than neighboring frequencies.275

Comparison of the observed correlation coefficients with a distribution of permuted correlations, obtained276

from 1000 samples in which one of the two power time series was circularly shifted by a random amount,277

indicated that the observed correlations were reliably larger than this permuted distribution for both low- and278

high-gamma (p < 10-3).279

[Figure 3 about here.]280

Second, to capture the phase relationship between gamma in mPFC and vStr, we computed the coherence281

spectrum, which quantifies the phase consistency between signals (Figure 3C). This similarly revealed el-282

evated coherence in the gamma band, including both low and high gamma. To characterize how gamma283

oscillations were modulated by behavior, we repeated the same set of analyses on three different behavioral284

epochs: “run”; “reward” and “rest” (see Materials and Methods). All three epochs exhibited power in the285

gamma band (Figure 3D), and both amplitude (Figure 3E) and phase (Figure 3F) relationships between vStr286

and mPFC were preserved. As expected from our previous report (Malhotra et al., 2015), gamma power was287

highest during rest, and the lowest during run, while theta power (7-10 Hz) showed the opposite pattern.288
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Furthermore, during run, the gamma power peak was shifted toward higher frequencies, as has been found289

in the dorsal striatum (von Nicolai et al., 2014). Taken together, these results indicate that despite these290

state-dependent changes, gamma amplitude and phase relationships were essentially unaffected.291

High and low gamma oscillations are associated with distinct directionality through the cortico-292

striatal loop293

Amplitude and phase correlations can establish that mPFC and vStr gamma are related, but cannot determine294

if one leads or lags the other. To address directionality, we used two different methods that rely on amplitude295

and phase respectively: cross-correlation of gamma amplitude in time (Adhikari et al., 2010), and the phase-296

slope index (PSI, Nolte et al. 2008); for both, we first detected gamma events using an amplitude threshold297

on the bandpass-filtered signal (low gamma: 45-65 Hz; high gamma: 70-90 Hz; see Materials and Methods).298

We detected and analyzed a total of 2733 low-gamma and 7390 high-gamma events (task: 456 low-gamma299

and 1908 high-gamma, 1.4 and 5.8 events/min respectively; rest: 2267 low-gamma and 5439 high-gamma,300

4.6 and 11.0 events/min respectively).301

To obtain an estimate of directionality based on the relative amplitudes of mPFC and vStr gamma, we de-302

tected the time shift for which their correlation was maximal, after excluding events in which there was no303

statistical evidence of a gamma amplitude cross-correlation (Figure 4A,B). The distribution of peak correla-304

tion times for high-gamma was significantly different from zero, indicating a mPFC lead (+0.59ms; p = 6.98305

∗ 10-15; one-sample Wilcoxon test). The low gamma distribution of peak correlation times was also signif-306

icantly different from zero, but in the opposite direction, indicating a vStr lead (-0.30ms; p = 1.26 ∗ 10-2;307

one-sample Wilcoxon test). This asymmetry was visually apparent both from the average cross-correlation308

across all events (Figure 4A, top panel) and from the histograms of peak cross-correlation times (bottom309

panel; note arrows indicating increased vStr lead counts for low-gamma, and increased mPFC lead counts310

for high-gamma).311
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[Figure 4 about here.]312

To obtain independent confirmation of the above pattern of results, we used the phase slope index (PSI,313

Nolte et al. 2008, as implemented in the FieldTrip toolbox; Oostenveld et al. 2011) which is based on the314

phase relationship between two signals (Figure 5). Specifically, if there is a constant time lag between two315

signals, as expected if a signal from one structure leads the other, then there is a linear relationship between316

phase lag and the frequency, whose slope indicates the sign and magnitude of the time lag (illustrated in317

Figure 5a). Crucially, we chose to use the PSI measure here because unlike typical autoregressive methods318

(e.g. Granger causality) PSI is relatively insensitive to false positives due to independent noise corrupting a319

common signal. In particular, since mPFC gamma tends to be lower amplitude than vStr gamma, Granger320

causality tends to identify vStr as Granger-causal to vStr even for zero time lag (as shown in Nolte et al. 2008321

and the FieldTrip connectivity tutorial).322

[Figure 5 about here.]323

Starting with the raw phase slopes, obtained from the phase lag as a function of frequency (Figure 5B, top) we324

observed a slope sign inversion around 65-70 Hz, with a positive slope in the low gamma band and a negative325

slope in the high gamma band. This pattern indicates a vStr lead in the low gamma band, and a mPFC lead326

in the high gamma band (Figure 5B, middle). This phase slope reversal between low- and high gamma327

was consistent across individual subjects (Figure 6A) and clearly evident in the grand average mean phase328

slope index (Figure 6B). Consistent with this result, the mean phase lag between vStr and mPFC shifted329

systematically from a vStr lag in the low gamma band to a mPFC lead in the high-gamma band (Figure330

6D-E). However, it is important to recognize that this measure is inherently circular, as well as sensitive to331

recording location relative to current sinks and sources (Nunez and Srinivasan, 2006; Buzsáki et al., 2012).332

[Figure 6 about here.]333
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To test if this result was modulated by behavior, we compared the mean PSI and phase lag during rest and334

task (Figure 6C, E). A similar pattern of directionality was obtained, with a noticeable shift toward lower335

frequency during rest, consistent with the similar shift in the power spectra (Figure 3). Finally, in order to336

estimate the time lag/lead between mPFC and vStr for both gamma bands, we used the linear relationship337

between phase slope and time lag (Equation 1). Based on the grand average phase slope, we found that vStr338

leads mPFC in the low-gamma band by 1.3 ms, and mPFC leads vStr by 0.52 ms in the high-gamma band.339

Although these values do not exactly match those obtained from the amplitude cross-correlation method,340

the millisecond timescale and directionality reversal between low- and high-gamma are preserved across341

methods.342

The relatively small, single-millisecond magnitude of the time lags we observed raise the possibility that343

some property of the recording electrodes and/or the recording system may be a factor. To test this possi-344

bility systematically, we recorded test signals in the 40-100Hz range (40, 60, 83 and 100 Hz sinusoids, 100345

µV magnitude) simultaneously across 24 recording channels with a range of impedances (mean: 0.78MΩ,346

minimum: 0.58MΩ, maximum: 1.02MΩ). The phase lags and phase slopes we observed in this setting347

were about a factor 40 smaller than those experimentally (Figure 7; compare the neural data Figure 6). The348

synthetic phase lags showed some dependence on signal frequency (mean phase lag for 40 Hz: 0.0023◦±349

0.12, 100 Hz: -0.0177◦± 0.15; ANOVA main effect, F(3) = 2.7, p = 0.047) and impedance (averaged over350

the two electrodes in the pair, ANOVA main effect, F(226) = 9.51, p < 10-5). Crucially however, there was351

no evidence of an interaction between impedance and frequency (ANOVA F(3,226) = 0.07, n.s.). This pattern352

did not change when taking the absolute value of the phase lags (since the choice of pair order is arbitrary).353

Thus, the observed phase lags and reversal across low- and high-gamma frequencies cannot be explained by354

electrical or filtering properties of the recording setup.355

[Figure 7 about here.]356

Taken together, these results indicate that mPFC high gamma oscillations systematically lead the vStr by357
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about 0.5 ms, and vStr low gamma oscillations systematically lead those in mPFC by about 1 ms.358

Experiment 2: High and low gamma oscillations are associated with distinct cell assemblies359

in the ventral striatum360

A crucial indicator of the relevance of local field potential oscillations for information processing is the extent361

to which they are associated with spiking activity. Given the dissociation in directionality between low- and362

high-gamma observed in the previous section, we hypothesized that these two distinct gamma oscillations363

would also be associated with distinct cell assemblies in the ventral striatum. We test this idea in Experiment364

2.365

Specifically, we used a suite of classifiers that attempted to infer the identity (label) of the gamma oscillation366

(“low” or “high”) based on the firing rates of ensembles of simultaneously recorded neurons. If it is possible367

to predict better than chance the label of the gamma event from the ensemble firing rates, this implies that368

there is a systematic relationship between the LFP and the information represented in the ensemble firing369

rates. Note that this approach tests for a very different relationship between LFP and spiking activity than370

measures such as spike-field coherence, which quantify entrainment or phase-locking of spiking to the LFP371

(Berke et al., 2004; van der Meer and Redish, 2009b; Howe et al., 2011), and generalizes our previous372

results examining single cells (van der Meer and Redish, 2009b). For this analysis, we used a different373

dataset (4 rats, 13-19 sessions per rat) containing large ensembles of vStr neurons recorded simultaneously374

along with LFPs as the rats ran a modified T-maze task (data set previously reported in van der Meer and375

Redish 2009a,b).376

As in the directionality analysis above, high and low gamma events were first detected, and then associated377

with the corresponding vector of spiking activity (Figure 8A). Linear discriminant classifiers were trained378

to associate low-gamma and high-gamma class labels in the training data set with points in N-dimensional379
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space, corresponding to the (normalized) event spike counts for an ensemble of N neurons. Classifier per-380

formance was then measured by class label accuracy on spike count vectors in the testing set (withheld from381

training; 10-fold cross-validation with 100 iterations). The analysis was also repeated for a control condition382

in which spike counts were taken from a nearby time period of equivalent length, which did not correspond383

to a detected gamma event (see Materials and Methods).384

[Figure 8 about here.]385

The results (averaged over 64 sessions) show that the classifier performed significantly better than the control386

condition (Figure 8B; ANOVA main effect F(1) = 201.96, p < 10-16). Furthermore, the error rate decreased387

as the number of neurons used was increased (ANOVA main effect F(4) = 40.16, p < 10-16). This pattern of388

results was consistent across individual subjects (Figure 9). Note that this analysis necessarily underestimates389

the true performance of the best performing ensemble, due to the large numbers of possible “n-choose-k”390

subsets which are sampled from, rather than exhaustively tested, here. In any case, it is clear that low and391

high gamma oscillations in the local field potential are associated with distinct activity patterns in vStr neural392

ensembles.393

[Figure 9 about here.]394

Compared to our previous report of single vStr cells modulating their firing rates as a function of low- and/or395

high-gamma power (van der Meer and Redish, 2009b), the current analysis is improved in several ways. First,396

most obviously, it generalizes the issue to the ensemble level. Although the observation that the identity of397

the gamma event can be predicted from the ensemble is necessarily implied by the known single cell firing398

rate modulation, the ensemble classification permits quantification of the more biologically relevant issue of399

to what extent multiple cells contain redundant or synergistic information – by showing how classification400

performance improves as a function of the number of cells. It is also less ad hoc, putting the analysis in401

a common metric (classification performance) which can accommodate other sources of information in the402
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future.403

In addition, the present analysis contains important controls, in that we (1) only used gamma events at404

“behaviorally clamped” locations, and (2) compared classification performance to a time-shifted control.405

Given the known different time courses of low- and high-gamma (van der Meer and Redish, 2009b; Howe406

et al., 2011) and the known ventral striatal single neuron tuning of e.g. “ramp” neurons, correlations between407

gamma power and firing rate could arise through independent alignment. These two controls reduce the408

possible contribution of overt behavioral differences and slow changes in unit activity which may correlate409

with gamma event occurrence.410

Discussion411

We have shown that low and high-gamma oscillations in the mPFC and vStr local field potential (LFP)412

are tightly synchronized, yet associated with opposite time lag/lead and distinct spiking activity patterns413

in vStr. Gamma-band synchrony between these structures has been noted or implied in previous studies414

(Berke 2009; Dejean et al. 2013; Donnelly et al. 2014 in rats, Cohen et al. 2012 in humans) but not analyzed415

in detail. In particular, previous work has been limited to analyses of coherence, which does not address416

the issue of directionality. Here, we show that mPFC leads vStr during high-gamma, but vStr leads mPFC417

during low-gamma LFP oscillations. Importantly, this pattern was consistent across subjects, as well as418

across distinct analysis methods that rely on independent features of the LFP (phase-slope index for phase,419

and cross-correlation for amplitude), and could not be accounted for based on electrode or recording system420

properties. In addition, we apply an ensemble classification method for quantifying the relationship between421

LFP and spiking activity to demonstrate, in a robust and generalizable manner, that low- and high-gamma422

activity in this circuit are associated with distinct local spiking.423

20



Possible explanations for the mechanisms of gamma synchronization between mPFC and vStr424

How should this striking temporal pattern of gamma oscillations in mPFC and vStr be interpreted? Near-425

zero phase lag synchrony in the gamma frequency band between anatomically separated areas has been426

reported in a number of different brain networks, such as between cortical areas (Traub et al., 1996) and427

between prefrontal cortex and the amygdala (Likhtik et al., 2014). At first glance, it may seem surprising428

that such fast oscillations, with cycle times in the range of 10-25 ms, can synchronize despite significant429

conduction and synaptic delays. However, mathematical analysis and computational modeling studies have430

shown that even relatively weak and slow long-range anatomical connections, in principle, are sufficient for431

such synchronization (Traub et al., 1996; Buzsáki, 2006; Vicente et al., 2008; Gollo et al., 2014). In the432

classic “coupled oscillator” models, the synchronizing elements are reciprocally (symmetrically) coupled, a433

scenario which is only approximately applicable to the mPFC-vStr circuit: although mPFC projects directly434

to vStr, the back-projection from vStr to mPFC is indirect, through the pallidum and thalamus (Haber, 2009;435

Sesack and Grace, 2010). How this specific degree of asymmetry in the mPFC/vStr coupling is expected to436

affect LFP synchrony is a question that can be addressed with computational models.437

In any case, the possible interpretation that mPFC-vStr synchrony reflects the coupling of oscillators requires438

ruling out a number of alternative explanations (Buzsáki and Schomburg, 2015). Looming large among these439

is the possibility of a common source, whether volume-conducted or synaptically driving. Although a re-440

cent computational model found such a scenario, surprisingly, to be less robust than coupling for generating441

zero-lag synchrony (Gollo et al., 2014), there are several prominent common sources to consider. First,442

the piriform cortex is located close to both mPFC and vStr, with a recent study demonstrating vStr gamma443

oscillations in the LFP are dominated by a piriform source (Carmichael and van der Meer, 2015). Further444

possibilities for common sources include the intermediate to ventral hippocampus, which projects monosy-445

naptically to both vStr and mPFC (Jay and Witter, 1991; Groenewegen et al., 1987), and generates low and446

high gamma oscillations (Colgin et al. 2009; Jackson et al. 2011; of course an oscillating common input is447

not strictly required if the receiving structure generates its own oscillations in response to input). Similarly,448
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the basolateral amygdala LFP exhibits gamma oscillations (although the sources of this have not been clearly449

shown; Popescu et al. 2009; Likhtik et al. 2014) and projects to vStr and mPFC (Shinonaga et al., 1994).450

Finally, the medial thalamus projects to both structures (Otake and Nakamura, 1998), although reports of451

gamma oscillations generated there are few (but see Minlebaev et al. 2011)452

Could a single common source account for the result that both amplitude and phase relationships differ from453

zero with opposite directions for low and high gamma bands? If transmission from the putative common454

source to mPFC and vStr is homogeneous, the directionality reversal is a logical impossibility: for each455

frequency band, whichever recording site is closest to the common source would lead the other. Note that456

this is true even if volume conduction is associated with non-zero propagation speed (as found by e.g. Zhang457

et al. 2014) and/or the extracellular medium exhibits frequency-dependent capacitance in the gamma range.458

However, if conduction to both recording sites is not homogeneous (Bédard et al., 2004; Nelson et al., 2013),459

it is possible in principle that a specific inhomogeneity in the conductance of gamma-band frequencies com-460

bined with a common source, could account for the observed results. For instance, if low-gamma oscillations461

experienced slower conductance to mPFC than to vStr than high-gamma, something like the observed results462

could arise. However, such inhomogeneities are thought to be very small, if they exists at all within such a463

narrow frequency range (Ranck, 1963; Nicholson and Freeman, 1975; Logothetis et al., 2007; Kajikawa and464

Schroeder, 2015) thus we believe this possibility to be unlikely. Beyond a single common source, mixtures465

from two distinct sources (one for low-gamma and another for high-gamma) are possible in principle: a low-466

gamma source relatively closer to vStr and a separate, lower-amplitude high-gamma source relatively closer467

to mPFC, combined with a finite conduction speed, could produce the observed reversal. How this could468

be reconciled with the striking temporal precision with which low- and high-gamma seem to be coordinated469

(Dejean et al., 2013; Malhotra et al., 2015) would however remain unclear in such a scenario.470

Next, it should be pointed out that the known conduction delays between mPFC and vStr (2-6 ms; Fino471

2005; Bosch et al. 2012) seem to be incompatible with an asymmetric, one-area-driving-the-other scenario472

in which oscillations in one area (say vStr) are caused by inputs from an oscillating mPFC; this is the473
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main reason why we suggest the coupled oscillator interpretation as the more likely alternative. Of course474

the possibility of vStr driving mPFC this way would be less likely still, given the indirect nature of that475

projection. Finally, it is important to rule out technical reasons for the observed pattern of results. We tested476

our analysis workflow both with simulated data and with synthetic test signals in the low and high-gamma477

band fed into the recording system; these controls seem to rule out artifactual causes for the observed results.478

Thus, in sum, we suggest that the observed temporal asymmetries between low- and high-gamma are unlikely479

to arise from a single common source; such explanations would require a highly specific inhomogeneity in480

volume conduction. Instead, this asymmetry may arise from transient deviations from a perfect coupling481

with zero phase lag, reflecting one area temporarily leading or lagging as a result of dynamically changing482

inputs and effective connectivity. Regardless of which interpretation ultimately proves correct, the issue483

of how the observed temporal asymmetry between low- and high-gamma comes is secondary to the main484

observation of near-zero lag synchrony between mPFC and vStr.485

Functional relevance of gamma synchronization between mPFC and vStr486

In general, gamma-band synchronization has been suggested as a possible mechanism for binding anatomi-487

cally segregated features of a coherent cell assembly, as occurs for instance when encoding visual percepts488

(Tallon-Baudry, 1999; Engel and Singer, 2001). The functional significance of such synchronization is489

thought to stem from the increased effectiveness of such coordinated assemblies in activating common pro-490

jection targets; in the case of mPFC and vStr those may include areas such as the ventral tegmental area491

(VTA; Haber 2009) and perhaps other basal ganglia nuclei such as the subthalamic nucleus (STN; Maurice492

et al. 1998).493

A related but distinct proposal regarding the functional relevance of gamma-band synchronization is the494

“communication through coherence” hypothesis and its ongoing refinements (Singer, 1999; Fries, 2005;495
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Akam and Kullmann, 2014). This idea contends that circuits with anatomically fixed connectivity can496

nonetheless dynamically change their effective connectivity through inter-area synchronization of oscilla-497

tory activity. However, it is unclear if the very short time lags observed here, on the order of ± 1 ms in498

opposite directions from zero lag, would be sufficient to have a meaningful impact on the direction of infor-499

mation flow between mPFC and vStr. Interestingly, Chang et al. (2000) found that the spiking of pairs of500

neurons, simultaneously recorded in mPFC and vStr, commonly synchronize with zero time lag.501

In any case, there is a substantial literature on the behavioral functions of the prefrontal-ventral striatal path-502

way, including disconnection studies in a variety of tasks (Christakou et al., 2004; Goto and Grace, 2008;503

Bossert et al., 2012) and identification of mPFC-vStr projection neurons as activated by motivationally rel-504

evant stimuli (McGinty and Grace, 2008; Britt et al., 2012). The question of whether gamma oscillations505

(or indeed, any oscillation) and their inter-area synchrony play a role in mediating these functions, provide506

a biomarker for joint activation without being causally important for anything, or are merely an epiphe-507

nomenon, is one currently being confronted in many neural systems. Our demonstration that ensemble508

spiking of vStr neurons can be used to classify the identity of the accompanying gamma oscillation (low- or509

high-gamma) suggests that at least, these oscillations are linked to spiking activity, and provides a basis for510

linking specific information content such as stimulus and outcome identities, value-related signals to these511

oscillations. Our results also inform the interpretation of an increasing number of studies aiming to translate512

limbic system LFP patterns from animal models to EEG/LFP recordings from human patient populations513

(McCracken and Grace, 2009; Uhlhaas and Singer, 2010; Donnelly et al., 2014).514
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Bédard, C., Kröger, H., and Destexhe, A. (2004). Modeling extracellular field potentials and the frequency-filtering properties of531

extracellular space. Biophysical journal, 86(3):1829–42.532

Berke, J. D. (2009). Fast oscillations in cortical-striatal networks switch frequency following rewarding events and stimulant drugs.533

European Journal of Neuroscience, 30(5):848–59.534

Berke, J. D., Okatan, M., Skurski, J., and Eichenbaum, H. B. (2004). Oscillatory Entrainment of Striatal Neurons in Freely-Moving535

Rats. Neuron, 43(6):883–896.536

Boraud, T., Brown, P., Goldberg, J. A., Graybiel, A. M., and Magill, P. J. (2002). Oscillations in the basal ganglia: The good, the537

bad, and the unexpected. Neuropharmacology, pages 3–24.538

Bosch, C., Mailly, P., Degos, B., Deniau, J.-M., and Venance, L. (2012). Preservation of the hyperdirect pathway of basal ganglia in539

a rodent brain slice. Neuroscience, 215:31–41.540

Bosman, C. A., Schoffelen, J.-M., Brunet, N., Oostenveld, R., Bastos, A. M., Womelsdorf, T., Rubehn, B., Stieglitz, T., De Weerd,541

P., and Fries, P. (2012). Attentional stimulus selection through selective synchronization between monkey visual areas. Neuron,542

75(5):875–88.543

Bossert, J. M., Stern, A. L., Theberge, F. R. M., Marchant, N. J., Wang, H.-L., Morales, M., and Shaham, Y. (2012). Role of544

projections from ventral medial prefrontal cortex to nucleus accumbens shell in context-induced reinstatement of heroin seeking.545

The Journal of neuroscience : the official journal of the Society for Neuroscience, 32(14):4982–91.546

Britt, J., Benaliouad, F., McDevitt, R., Stuber, G., Wise, R., and Bonci, A. (2012). Synaptic and Behavioral Profile of Multiple547

Glutamatergic Inputs to the Nucleus Accumbens. Neuron, 76(4):790–803.548
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List of Figures704

1 Task design and example local field potential traces. A: Layout of the behavioral apparatus705

used, an elevated linear track without (top left) or with (right) a choice point. Rats expe-706

rienced one configuration per daily 40-minute recording session, starting on the no-choice707

track before advancing to the choice configuration. Each track configuration was pseudo-708

randomized between days (with the alternate configurations shown in gray) such that there709

was no systematic association between body turns at the end of the track and reward. Food710

pellet rewards were dispensed at both ends of the track once the rat nosepoked into the re-711

ward receptacle for 700ms (bottom), with a further 800ms elapsing until rats made contact712

with the first food pellet. In the choice task, only one location was rewarded, and subject to713

reversal whenever 40 trials were performed with ≥90% correct in the last 20 trials. Because714

no differences between task conditions were found in the local field potential data, analy-715

ses collapsed across all task conditions. B: Example of simultaneously recorded local field716

potential signals from the ventral striatum (vStr) and medial prefrontal cortex (mPFC) dur-717

ing the task. Signal power in the low-gamma (45-65 Hz, gray) and high-gamma (70-90 Hz,718

black) is also shown, with stars indicating detected gamma events as determined by crossing719

a threshold (95th percentile; see Methods). Event times are highlighted by the bold traces720

in the LFPs, illustrating the tendency for mPFC gamma to occur synchronously with mPFC721

gamma. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34722

2 Verification of electrode locations in the ventral prelimbic (PrL) and infralimbic (IL) areas723

of the medial prefrontal cortex, and the nucleus accumbens core and shell (AcbC, AcbS).724

A: Schematic of electrode tracks for each subject, as determined by microscopy analysis of725

sectioned and stained brain tissue (B). Dashed lines indicate electrode tracks; tracks ending726

in a square marker were chosen for analysis. Electrodes were not advanced after recording727

commenced. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35728

3 Phase and amplitude correlations between vStr and mPFC local field potentials. A: Power729

spectrum density (PSD) for vStr (black solid line) and mPFC (gray dashed line) normalized730

(1/f2) and averaged over 8 sessions (4 rats); showing that the power in the gamma band731

was higher than the 1/f baseline. B: Power correlation (average) between vStr and mPFC.732

The cross-frequency correlation matrix diagonal band (black) shows high correlation values733

in the gamma bands; indicating that gamma oscillations tend to occur at similar time across734

the two structures. Each of the two horizontal bands (light gray: 45-65 Hz, dark gray: 70-735

90 Hz) show specific correlation increases with the corresponding frequency band in the736

other structure; indicating that a given gamma type tends to co-occur in mPFC and vStr. C:737

Coherence spectra (average) between mPFC-vStr (black) and vStr-vStr (dashed gray) show738

high coherence in the gamma band; indicating that gamma oscillations have a consistent739

phase relationship between the two recorded sites. D-F: As A-C, but for different behavioral740

epochs: running and reward periods on the task, and off-task rest periods. Note that gamma741

synchrony between structures is preserved. . . . . . . . . . . . . . . . . . . . . . . . . . . . 36742
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4 Power cross-correlations between vStr and mPFC reveal asymmetries between low and high-743

gamma oscillations. A: Average cross-correlation between vStr and mPFC (top) for detected744

low-gamma events (red) and high-gamma events (blue) and histogram of cross-correlation745

peaks (bottom). Note the asymmetry between the two distributions, indicated by the green746

arrow highlighting relatively more low gamma cross-correlation peaks on the vStr-lead side,747

and the red arrow indicating relatively more high-gamma peaks on the mPFC-lead side. B:748

Full distributions of cross-correlations for low-gamma (left) and high-gamma (right) events.749

Color scale indicates the correlation coefficient across time lags; white dots show the time750

of the peak cross-correlation for each events. Events are ordered according to this time,751

and the resulting distributions of peak times are shifted from zero in opposite directions for752

low-gamma (vStr lead, left direction), and high-gamma (mPFC lead, right direction). . . . . 37753

5 Schematic of the rationale underlying phase slopes, and computation of the phase slope in-754

dex for an example recording session. A: Schematic of the linear relationship between phase755

lag and frequency used to interpret the phase slope. In this example, the red signal always756

leads the blue signal by 5 ms, which results in a different phase lag across frequencies (20, 25757

and 33.3 Hz in this example). The bottom panel shows the linear relationship between phase758

lag and frequency for the above examples, resulting a positive slope for the red-blue phase759

difference indicating a red lead (green phase slope). B: Phase lags, phase slope, and phase760

slope index (PSI) for a single example “Task” session. Note that the phase lag as a function761

of frequency (top panel) contains approximately linear regions in the low-gamma (45-65 Hz,762

green) and high-gamma (70-90 Hz, red) frequency bands, with slopes in opposite directions.763

Phase lags are computed relative to vStr phase, so a negative phase lag indicates earlier phase764

in vStr compared to mPFC. The phase slope (middle panel) is the derivative of the raw phase765

lag, and the reversal of the phase slope sign around 65-70 Hz indicates that high and low766

gamma are associated with opposite directionality in the vStr-mPFC system, with vStr lead-767

ing for low gamma and mPFC leading for high gamma oscillations. The bottom panel shows768

the phase slope index (PSI) which normalizes the raw phase slope by its standard deviation,769

obtained using a bootstrap (FieldTrip ft connectivityanalysis() function). . . . . 38770

6 A: The phase slope reversal for low and high gamma is robust across subjects. Each ex-771

ample (one per rat) shows the phase lag (blue) and its derivative, the phase slope (green)772

across frequency, calculated over all gamma events. B: Phase slope index (PSI) and phase773

slope (green) as a function of frequency, averaged over all sessions (S.E.M. in dashed lines),774

similarly indicates that vStr leads during low-gamma and mPFC leads during high-gamma775

oscillations. C: The phase slope index reverses between low and high gamma during both776

task (red) and rest (blue) epochs (averages over 8 sessions). There is a slight overall shift777

in frequency between rest and task (also seen in the power spectra, see Figure 3D) but the778

PSI reversal between low and high-gamma is preserved. Light green and light red shading779

indicate the low-gamma band (45-65Hz) and high-gamma band (70-90Hz) respectively. D:780

Average phase lag across sessions for all data similarly shows a systematic shift as a function781

of gamma band frequency, particularly evident during task performance (E). As in Figure 5,782

phase lags are computed relative to vStr phase such that a negative phase lag indicates earlier783

phase in vStr compared to mPFC; conversely, positive phase lag indicates earlier phase in784

mPFC compared to vStr. Note that these absolute phase differences should be interepreted785

with caution due to their inherent circularity and dependence on precise electrode location786

relative to currrent sinks and sources. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39787
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7 Electrode and recording system properties cannot account for the observed phase lags. A:788

Observed phase lags as a function of frequency for 276 electrode pairs (each line corresponds789

to one pair) when presented with sinusoidal test signals at 40, 63, 80 and 100 Hz. The790

magnitude of the phase lags to these artificial signals is much smaller than those observed791

for mPFC and vStr LFPs (compare Figure 6A) and although there were main effects of792

frequency and electrode impedance on the phase lag, there was no evidence of interaction793

between them (ANOVA, see main text). B: Average phase slopes over the frequencies shown794

in A are effectively zero, unlike in the neural data; compare Figure 6A. . . . . . . . . . . . . 40795

8 Schematic illustrating the classification of gamma events based on ensemble spiking activ-796

ity. A linear discriminant classifier was trained to associate spike counts from ensembles of797

simultaneously recorded ventral striatal neurons with low-gamma (lg, green) or high-gamma798

(hg, red) events. Classifier performance was tested on events not included in the training set799

(black dashed lines, “?”) and compared to a control condition in which labels were associated800

with time-shifted events of equivalent length. . . . . . . . . . . . . . . . . . . . . . . . . . 41801

9 Low- and high-gamma events in the ventral striatal local field potential (LFP) are associated802

with distinct neural ensembles. A: Proportion of classification errors in associating ensem-803

ble spiking with low- or high-gamma LFP events relative the chance level (0.5; 0 indicates804

perfect classification) as a function of ensemble size. Performance of the linear discriminant805

classifier on testing data under 10-fold cross-validation (for the best performing ensemble of806

the given size) is shown in continuous black for the original data; in dashed light gray for the807

control condition (spike data shifted by up to 5 s relative to the LFP). These results indicate808

an association between each gamma oscillation type and a distinct pattern of activation at809

the ensemble level. B: As in panel A, but for individual subjects, showing that the pattern of810

results is robust. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42811
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Figure 1: Task design and example local field potential traces. A: Layout of the behavioral appara-
tus used, an elevated linear track without (top left) or with (right) a choice point. Rats experienced
one configuration per daily 40-minute recording session, starting on the no-choice track before
advancing to the choice configuration. Each track configuration was pseudorandomized between
days (with the alternate configurations shown in gray) such that there was no systematic associa-
tion between body turns at the end of the track and reward. Food pellet rewards were dispensed at
both ends of the track once the rat nosepoked into the reward receptacle for 700ms (bottom), with
a further 800ms elapsing until rats made contact with the first food pellet. In the choice task, only
one location was rewarded, and subject to reversal whenever 40 trials were performed with ≥90%
correct in the last 20 trials. Because no differences between task conditions were found in the local
field potential data, analyses collapsed across all task conditions. B: Example of simultaneously
recorded local field potential signals from the ventral striatum (vStr) and medial prefrontal cortex
(mPFC) during the task. Signal power in the low-gamma (45-65 Hz, gray) and high-gamma (70-90
Hz, black) is also shown, with stars indicating detected gamma events as determined by crossing
a threshold (95th percentile; see Methods). Event times are highlighted by the bold traces in the
LFPs, illustrating the tendency for mPFC gamma to occur synchronously with mPFC gamma.

34



Figure 2: Verification of electrode locations in the ventral prelimbic (PrL) and infralimbic (IL) ar-
eas of the medial prefrontal cortex, and the nucleus accumbens core and shell (AcbC, AcbS). A:
Schematic of electrode tracks for each subject, as determined by microscopy analysis of sectioned
and stained brain tissue (B). Dashed lines indicate electrode tracks; tracks ending in a square
marker were chosen for analysis. Electrodes were not advanced after recording commenced.

35



Figure 3: Phase and amplitude correlations between vStr and mPFC local field potentials. A:
Power spectrum density (PSD) for vStr (black solid line) and mPFC (gray dashed line) normalized
(1/f2) and averaged over 8 sessions (4 rats); showing that the power in the gamma band was
higher than the 1/f baseline. B: Power correlation (average) between vStr and mPFC. The cross-
frequency correlation matrix diagonal band (black) shows high correlation values in the gamma
bands; indicating that gamma oscillations tend to occur at similar time across the two structures.
Each of the two horizontal bands (light gray: 45-65 Hz, dark gray: 70-90 Hz) show specific cor-
relation increases with the corresponding frequency band in the other structure; indicating that a
given gamma type tends to co-occur in mPFC and vStr. C: Coherence spectra (average) between
mPFC-vStr (black) and vStr-vStr (dashed gray) show high coherence in the gamma band; indicat-
ing that gamma oscillations have a consistent phase relationship between the two recorded sites.
D-F: As A-C, but for different behavioral epochs: running and reward periods on the task, and
off-task rest periods. Note that gamma synchrony between structures is preserved.
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Figure 4: Power cross-correlations between vStr and mPFC reveal asymmetries between low
and high-gamma oscillations. A: Average cross-correlation between vStr and mPFC (top) for de-
tected low-gamma events (red) and high-gamma events (blue) and histogram of cross-correlation
peaks (bottom). Note the asymmetry between the two distributions, indicated by the green arrow
highlighting relatively more low gamma cross-correlation peaks on the vStr-lead side, and the red
arrow indicating relatively more high-gamma peaks on the mPFC-lead side. B: Full distributions
of cross-correlations for low-gamma (left) and high-gamma (right) events. Color scale indicates
the correlation coefficient across time lags; white dots show the time of the peak cross-correlation
for each events. Events are ordered according to this time, and the resulting distributions of peak
times are shifted from zero in opposite directions for low-gamma (vStr lead, left direction), and
high-gamma (mPFC lead, right direction).
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Figure 5: Schematic of the rationale underlying phase slopes, and computation of the phase slope
index for an example recording session. A: Schematic of the linear relationship between phase lag
and frequency used to interpret the phase slope. In this example, the red signal always leads the
blue signal by 5 ms, which results in a different phase lag across frequencies (20, 25 and 33.3 Hz
in this example). The bottom panel shows the linear relationship between phase lag and frequency
for the above examples, resulting a positive slope for the red-blue phase difference indicating a red
lead (green phase slope). B: Phase lags, phase slope, and phase slope index (PSI) for a single
example “Task” session. Note that the phase lag as a function of frequency (top panel) contains
approximately linear regions in the low-gamma (45-65 Hz, green) and high-gamma (70-90 Hz, red)
frequency bands, with slopes in opposite directions. Phase lags are computed relative to vStr
phase, so a negative phase lag indicates earlier phase in vStr compared to mPFC. The phase
slope (middle panel) is the derivative of the raw phase lag, and the reversal of the phase slope sign
around 65-70 Hz indicates that high and low gamma are associated with opposite directionality in
the vStr-mPFC system, with vStr leading for low gamma and mPFC leading for high gamma oscilla-
tions. The bottom panel shows the phase slope index (PSI) which normalizes the raw phase slope
by its standard deviation, obtained using a bootstrap (FieldTrip ft connectivityanalysis()
function).
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Figure 6: A: The phase slope reversal for low and high gamma is robust across subjects. Each
example (one per rat) shows the phase lag (blue) and its derivative, the phase slope (green) across
frequency, calculated over all gamma events. B: Phase slope index (PSI) and phase slope (green)
as a function of frequency, averaged over all sessions (S.E.M. in dashed lines), similarly indicates
that vStr leads during low-gamma and mPFC leads during high-gamma oscillations. C: The phase
slope index reverses between low and high gamma during both task (red) and rest (blue) epochs
(averages over 8 sessions). There is a slight overall shift in frequency between rest and task (also
seen in the power spectra, see Figure 3D) but the PSI reversal between low and high-gamma is
preserved. Light green and light red shading indicate the low-gamma band (45-65Hz) and high-
gamma band (70-90Hz) respectively. D: Average phase lag across sessions for all data similarly
shows a systematic shift as a function of gamma band frequency, particularly evident during task
performance (E). As in Figure 5, phase lags are computed relative to vStr phase such that a
negative phase lag indicates earlier phase in vStr compared to mPFC; conversely, positive phase
lag indicates earlier phase in mPFC compared to vStr. Note that these absolute phase differences
should be interepreted with caution due to their inherent circularity and dependence on precise
electrode location relative to currrent sinks and sources.
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Figure 7: Electrode and recording system properties cannot account for the observed phase lags.
A: Observed phase lags as a function of frequency for 276 electrode pairs (each line corresponds
to one pair) when presented with sinusoidal test signals at 40, 63, 80 and 100 Hz. The magnitude
of the phase lags to these artificial signals is much smaller than those observed for mPFC and
vStr LFPs (compare Figure 6A) and although there were main effects of frequency and electrode
impedance on the phase lag, there was no evidence of interaction between them (ANOVA, see
main text). B: Average phase slopes over the frequencies shown in A are effectively zero, unlike in
the neural data; compare Figure 6A.
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Figure 8: Schematic illustrating the classification of gamma events based on ensemble spiking
activity. A linear discriminant classifier was trained to associate spike counts from ensembles of
simultaneously recorded ventral striatal neurons with low-gamma (lg, green) or high-gamma (hg,
red) events. Classifier performance was tested on events not included in the training set (black
dashed lines, “?”) and compared to a control condition in which labels were associated with time-
shifted events of equivalent length.
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Figure 9: Low- and high-gamma events in the ventral striatal local field potential (LFP) are associ-
ated with distinct neural ensembles. A: Proportion of classification errors in associating ensemble
spiking with low- or high-gamma LFP events relative the chance level (0.5; 0 indicates perfect
classification) as a function of ensemble size. Performance of the linear discriminant classifier on
testing data under 10-fold cross-validation (for the best performing ensemble of the given size) is
shown in continuous black for the original data; in dashed light gray for the control condition (spike
data shifted by up to 5 s relative to the LFP). These results indicate an association between each
gamma oscillation type and a distinct pattern of activation at the ensemble level. B: As in panel A,
but for individual subjects, showing that the pattern of results is robust.
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